
Preliminary Draft Specification for Comment  Updated July 16, 2008 

1 / 25 Copyright 2008 OpenFPGA Inc. 

 

OpenFPGA General API Specification 0.4 (DRAFT FOR COMMENT) 

1. Goals and Assumptions 
 

The general API specification is proposed as an industry standard API for high-level language 

access to Reconfigurable Computing (RC) resources in a portable manner. The API has 

several design goals: 

 

� Portability and supportability across a wide range of available RC platforms. 

� Similarity to existing common capabilities available within RC platforms. 

� Minimal essential functionality to support general application acceleration with RC 

resources. 

� Simple to use, understand and implement. 

 

Several assumptions were made regarding the operational environment for processes 

incorporating the API including: 
 

� A logical host software system - the host - exists able to handle basic communication and 

housekeeping tasks for the reconfigurable resource. 

� A device is a generic term for a reconfigurable computing device such as an FPGA or 

series of connected FPGAs or even a heterogeneous device comprised of FPGAs and 

other non-reconfigurable devices. 

� Calling process has configuration access to the reconfigurable resources. 

� Calling process can assume control of the reconfigurable resource. 

� Several reconfigurable devices may exist in the system. 

� The system may be a multi-user system. 

� Calling process can identify memory specific for communication with the RC device. 

� The reconfigurable device may run asynchronously. 

� The implementation of the API should be thread-safe. 

� The API will be both “C-friendly” and “Fortran-friendly”. 

 

Several assumptions were not made in creating the specification: 

 

� All resources might not reside on the same host node. 

� The operating system might not be multi-user. 

� The operating system might not be thread-capable. 

� Reconfigurable devices might not be homogenous. 

� Methods of communication between host process and reconfigurable device are 

unspecified. 

� Assumptions about memory hierarchies and memory address spaces shared between host 

system and reconfigurable resource are not made. 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

2 / 25 Copyright 2008 OpenFPGA Inc. 

 

The general API specification does not attempt to provide all functionality for all aspects of 

reconfigurable computing use in high-level applications. Several aspects have been deferred 

to a later release or to be embodied as vendor specific extensions in the near term: 

 

� Communication directly between RC devices. 

� Continuously streaming data between host and RC devices. 

� RC device-initiated communication to the host (interrupts) 

� Remote management and remote configuration (including partial reconfiguration) of 

FPGAs. 

� Communication and control among multiple RC devices. 

� Full details on probing information and state of a RC device. 

� Portability of specific core definitions 

 

 

Specification Requirements: 

 

� The OpenFPGA GenAPI interface specification provides a definition of a baseline 

portable API for interoperability at the source code level for applications incorporating 

reconfigurable device technology. Successful implementation of the OpenFPGA 

GenAPI requires the following: 

o All defined interface elements have been defined in a compilation environment 

o The state of the system behaves consistently, in accordance with the provided state 

diagram describing the macroscopic behavior of the heterogeneous system 

o Specified error messages and error handling are implemented according to 

specification. 

 

� The OpenFPGA GenAPI does not preclude the vendor from offering compatible 

extensions of the API provided these extensions are clearly delineated. 

 

� The OpenFPGA GenAPI specification is copyright by OpenFPGA, Inc. Permission for 

use is granted with the provision OpenFPGA Inc. and the specific version of the API 

are referenced.  

 

Literature reference:  

OpenFPGA GenAPI specification version 0.4. Available for download at 

www.openfpga.org. 2008.  



Preliminary Draft Specification for Comment  Updated July 16, 2008 

3 / 25 Copyright 2008 OpenFPGA Inc. 

2. Data Dictionary 

 
The data dictionary provides a working glossary of terms utilized in the definition of the API 

specification. 

 
Host:  A host is the computer system where the run time process or program invoking the API at an 

application level resides. 

 

Device:  A device is a reconfigurable computing resource that can be configured dynamically. 

Usually a physical device containing an FPGA or other reconfigurable hardware.  

 

Instance:  An instance is the set of instructions required to dynamically configure a device. For 

individual FPGA devices, this is most commonly the bitstream.  

 

Context: A context is the data associated with a collection of devices (as defined above) available to a 

running process.  

 

Buffer:  A buffer is a range of physical memory that is commonly accessible by a device and the 

process. 

 

Property: A property is defined as a name-value pair.  
 

device_id: A label for a structure for a particular accelerator. It holds the state of the accelerator 

including hardware error states and can be queried by oa_get_device_property. At 

present, only RC device types are supported. 

 

context_id: A label for an allocation context state storage location. The structure handles software error 

states and holds other state for the group of allocated accelerators associated with the 

context. It can be queried by oa_get_context_property. 

 

instance_id: A label for a structure for a particular instance. It holds the state of the instance and can be 

queried by oa_get_instance_property. 

 

buff_id: A label for a structure for an allocated buffer. It holds the state of the buffer, including its 

association with a particular memory location of a reconfigurable resource. 

 

msglvl: Property defining the message level of output generated by invoked methods 

 

status: The status returned  by an invoked method 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

4 / 25 Copyright 2008 OpenFPGA Inc. 

3. Implementable data types 

 

Defined constants and other values are defined in the following section. 

 

3.1 Tracing and debugging information 

 

msglvl implemented as defined integer constants 

Definition Value Behavior 

OA_NO_OUTPUT 0 No output produced 

from invoked method 

OA_TRACE 1 Low-level tracing 

provided including 

method name and 

timing sequence 

OA_TRACE_DATA 2 OA_TRACE plus 

signatures of data 

passed.  

Content and format of the specific information when displayed is vendor defined. 
  

3.2 Success status 
 

status  implemented as defined integer constants 

  Definition  Value  Behavior 

OA_SUCCESS  1  successful method invocation 

OA_FAILURE  0  unsuccessful method invocation 

 
3.3 Memory types 

 

When referring to types of memory available on the system, the following declarations and 

definitions are utilized. 

 
mem_types implemented as defined integer constants 

Definition Value Description 

OA_MEMT_UNKOWN 0 Type  of attached memory bank is 

unkown 

OA_MEMT_SRAM 1 Attached memory bank is of SRAM 

type 

OA_MEMT_DRAM 2 Attached memory bank is of DRAM 

type 

OA_MEMT_QDRAM 3 Attached memory bank is of QDRAM 

type 

 
 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

5 / 25 Copyright 2008 OpenFPGA Inc. 

4. Method Summary Overview 
 

Consolidated interface method index: 
 

Calls to initialize the API, close the API and handle errors 

• oa_init( i_version_str, o_context_id ); 

• oa_end( i_context_id ); 

• oa_get_errno ( i_context_id, o_errno_int ); 

• oa_perror ( i_context_id, i_errno_int, i_txt_str ); 

 

Atomic allocation of devices 

• oa_find_device( i_context_id, i_prev_device_id, o_next_device_id ); 

• oa_alloc_device_add ( i_context_id, i_device_id ); 

• oa_alloc_device_commit ( i_context_id ); 

• oa_free_device ( i_context_id, i_device_id ); 

• oa_list_alloc_device ( i_context_id, i_prev_device_id, o_next_device_id ); 

 

Querying properties and states of the API, FPGAs and instances. 

• oa_get_context_property ( i_context_id, i_property_id_str, o_property_str ); 

• oa_set_context_property ( i_context_id, i_property_id_str, i_property_str ); 

• oa_get_device_property ( i_context_id, i_device_id, i_property_id_str, o_property_str ); 

• oa_set_device_property ( i_context_id, i_device_id, i_property_id_str, i_property_str ); 

• oa_get_instance_property ( i_context_id, i_instance_id, i_property_id_str, o_property_str ); 

• oa_set_instance_property ( i_context_id, i_instance_id, i_property_id_str, i_property_str ); 
 

Allocating instances, configuring and resetting FPGAs 

• oa_alloc_instance ( i_context_id, i_bitstream_filename, o_instance_id ); 

• oa_free_instance ( i_context_id, i_instance_id ); 

• oa_use_instance ( i_context_id, i_bitstream_ptr, i_size_int, o_instance_id ); 

• oa_configure_device ( i_context_id, i_device_id, i_instance_id ); 

• oa_init_device ( i_context_id, i_device_id ); 

 

Allocating transfer and receive buffers 

• oa_malloc_buffer ( i_context_id, i_device_id, i_port_pos_str, i_size_int, i_mode_int, 

o_buff_id ); 

• oa_reuse_buffer ( i_context_id, i_device_id, i_port_pos_str, i_size_int, i_mode_int, o_buff_id 

); 

• oa_get_buffer_ptr ( i_context_id, i_buff_id, o_buffer_ptr ); 

• oa_free_buffer ( i_context_id, i_device_id, i_buff_id ); 

 

Initiating execution, waiting for normal termination and performing premature abortion of execution 

• oa_run ( i_context_id, i_device_id ); 

• oa_wait ( i_context_id, i_device_id ); 

• oa_abort ( i_context_id, i_device_id ); 

• oa_status(i_context_id, i_device_id, o_value_int32); 

 

Transferring data sets and single values to and from devices 

• oa_send ( i_context_id, i_buff_id ); 

• oa_receive ( i_context_id, i_buff_id ); 

• oa_write_parameter{32|64} ( i_context_id, i_device_id, i_parameter_pos_str, 

i_value_int{32|64} ) 

• oa_read_parameter{32|64} ( i_context_id, i_device_id, i_parameter_pos_str, 

o_value_int{32|64} ) 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

6 / 25 Copyright 2008 OpenFPGA Inc. 

5. OpenFPGA GenAPI Function Definitions 

Note: All proposed functions have the argument context_id to hold state across function calls. For 

example, error state will be held by context_id. In the tables of the argument description, this 

argument is usually not described for simplicity.  

 

All proposed functions return a success flag. The value of the flag will be 1 to indicate successful 

completion of the function call, and 0 to indicate failure (See section 3.2). Use the functions 

oa_get_errno and oa_perror to query the error state (See section 6.0 for error details). 

 

All arguments are passed by reference.  
 

Error conditions are not yet identified for each method. 
 

5.1 Discovery and Initialization 

 

These methods provide a means for processes to discover, initialize, allocate and query 

reconfigurable resources available to the process. 
 

Function: oa_init 

Usage:   success = oa_init( i_version_str, o_context_id ); 

 

Parameter I/O Description 

i_version_str I The OpenFPGA GenAPI version that the system must 

be compatible with to correctly execute the program. 

If the system is not capable of supporting the version 

specified by i_version_str, the oa_init call will flag 

failure. Regardless of success, the context_id will be 

in a state usable with oa_get_errno and oa_perror. The 

version string could be two numbers separated by a 

dot (i.e. "1.3"), but it could any other string too, 

including free-form name strings (i.e. "gutsy"). 

By specifying a particular version, the programmer is 

certifying that all uses of the API will be compatible 

with that version; the program should fail if API calls 

are made that are incompatible with the stated 

version.  

o_context_id O The new context_id. This structure is used by all other 

oa_functions to hold state 

 

Description: Initialize the API. This also returns a context_id for use in all other functions. The 

version_str parameter is required, and is used to verify that the system running the program is compatible 

with the version of the OpenFPGA GenAPI that is assumed in the program. 

 

Error conditions: 

 

Function: oa_end 

Usage:   success = oa_end( i_context_id ); 

 

Parameter I/O Description 

i_context_id I The context_id to free 

 

Description: Free the context_id structure associated with the corresponding oa_init call. Will also free 

any other reconfigurable resources associated with the context_id, including any data structures created by 

other OpenFPGA GenAPI calls using this context_id.  Memory buffer allocation is unaffected. User is 

responsible for previously releasing any user allocated buffers. 

  

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

7 / 25 Copyright 2008 OpenFPGA Inc. 

 

 

Function: oa_get_errno 

Usage:   success = oa_get_errno ( i_context_id, o_errno_id ); 

 

Parameter I/O Description 

i_context_id I  

o_errno_id O The error, for use with oa_perror 

 

Description: If a call to a function in the API fails (returns zero), the errno_id parameter can be used with 

oa_perror to print a human readable error message. 

 

Error conditions: 

 

Function: oa_perror 

Usage:   success = oa_perror ( i_context_id, i_errno_id, i_user_str ); 

 

Parameter I/O Description 

i_context_id I  

i_errno_id I An error that has previously been reported. 

i_user_str I A string of text that is written to stderr before the 

error message. 

 
Description: Prints a human-readable error message on stderr that describes the error associated with 

i_errno_id. Any text in i_user_str is printed first, before the error message, and the whole message is 

terminated by a new-line. 

 

Error conditions: 

 

Function: oa_find_device 

Usage:  success = oa_find_device( i_context_id, i_prev_device_id, 

o_next_device_id ); 

  

Parameter I/O Description 

i_context_id I  

i_prev_device_id I Vendor & platform specific ID or 

OA_NO_DEVICE 

o_next_device_id O Vendor & platform specific ID or 

OA_NO_DEVICE 

 

Description: The function finds an available device supported though the API and returns a handle structure to 

the device. If called with a non-null argument, the following device in a vendor-defined order is returned. By 

repeatedly calling this function with the previous call’s result as input argument, all available devices supported 

by the API  in the system can be traversed. 

 

Error conditions: 

 

Function: oa_alloc_device_add 

Usage:   success = oa_alloc_device_add ( i_context_id, i_device_id ); 

 

Parameter I/O Description 

i_context_id I The allocation context to add a device to 

i_device_id I The device_id to add to the allocation context 

 

Description: Add a specific device to an allocation context. The allocation context, context_id, is given by a 

call to oa_init, and the device_id is given by calls to oa_find_device. Note that the device are not 

actually allocated until a call to oa_alloc_device_commit has been made. 

 

Error conditions: 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

8 / 25 Copyright 2008 OpenFPGA Inc. 

 

  

Function: oa_alloc_device_commit 

Usage:  success = oa_alloc_device_commit ( i_context_id ); 

 

Parameter I/O Description 

i_context_id I  

 

Description: Allocates all devices that have been added to the context_id by calls to oa_alloc_device 

_add as an atomic operation. This prevents race conditions between multiple processes competing for device 

resources. 

 

Error conditions: 

 

Function: oa_list_alloc_device 

Usage:  success = oa_list_alloc_device ( i_context_id, 

i_prev_device_id, o_next_device_id ); 

 

Parameter I/O Description 

i_context_id I  

i_prev_device_id I Vendor & platform specific ID or 

OA_NO_DEVICE 

o_next_device_id O Vendor & platform specific ID or 

OA_NO_DEVICE 

 

Description: Iterate through the devices that have previously been added to the context_id. 

 

Error conditions: 

 

Function: oa_free_device 

Usage:  success = oa_free_fpga ( i_context_id, i_device_id ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to remove from the context_id and 

free from the common resource pool 

 

Description: Remove a specific device from the allocation context and, if allocated, free it. 

 

Error conditions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

9 / 25 Copyright 2008 OpenFPGA Inc. 

Function: oa_get_context_property, oa_get_device_property, 

oa_get_instance_property 

Usage:  success = oa_get_context_property ( i_context_id, 

i_property_id_str, o_property_str ); 

 success = oa_get_fpga_property ( i_context_id, i_device_id, 

i_property_id_str, o_property_str ); 

 success = oa_get_instance_property ( i_context_id, 

i_instance_id, i_property_id_str, o_property_str ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to query, only available with 
oa_get_device_property 

i_instance_id I The instance to query, only available with 
oa_get_instance_property 

o_property_str O The value of the property queried 

 
Description: Query the properties of a resource. All properties are strings, and resulting values are strings, 

separated by space if multiple values are returned. Properties and property values may consist of underscore, 

numbers and lowercase letters in the English alphabet. Default properties are undefined and properties. 

The properties property will return a list of all valid properties for the device. 

 

See Section 5.9 for definitions of properties available at each level. 

 

Error conditions: 

 

Function: oa_set_context_property, oa_set_device_property, 

oa_set_instance_property 

Usage:  success = oa_set_context_property ( i_context_id, 

i_property_id_str, i_property_str ); 

success = oa_set_device_property ( i_context_id, i_device_id, 

i_property_id_str, i_property_str ); 

success = oa_set_instance_property ( i_context_id, 

i_instance_id, i_property_id_str, i_property_str ); 

 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to set a property in, only available with 
oa_set_device_property 

i_instance_id I The instance to set a property in, only available with 
oa_set_instance_property 

i_property_id_str I The name of the property to set 

i_property_str I The value to which the property should be set 

 

Description: Change the properties of resources. All properties are strings, and settable values are strings, 

separated by space if multiple values are set. Properties and property values may consist of underscore, numbers 

and lowercase letters in the English alphabet. Default properties are undefined and properties. 

 

Error conditions: 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

10 / 25 Copyright 2008 OpenFPGA Inc. 

5.2 Instance Configuration and Initiation 

 
These methods provide a means for the process to load hardware instances for future 

execution, configure devices with loaded instances and reset the configured device. 
 

 

Function: oa_alloc_instance 

Usage:  success = oa_alloc_instance ( i_context_id, 

i_configuration_filename_str, o_instance_id ); 

 

Parameter I/O Description 

i_context_id I  

i_config_filename_str I The file name, including full path to the configuration 

file (bitstream in the case of FPGA devices) 

o_instance_id O A handle to the allocated instance 

 

Description: Load file contents containing a device configuration instance from disk into primary memory and 

assign a instance id. 

 

Error conditions: 

 

Function: oa_free_instance 

Usage:  success = oa_free_instance ( i_context_id, i_instance_id ); 

 

Parameter I/O Description 

i_context_id I  

i_instance_id I The instance to remove from memory 

 

Description: Free the resources associated with a particular instance from primary memory. This does not 

remove the instance from a configured device if it has previously been used to configure a device. 

 

Error conditions: 

 

Function: oa_use_instance 

Usage:  success = oa_use_instance ( i_context_id, i_bitstream_ptr, 

i_size_int, o_instance_id ); 

 

Parameter I/O Description 

i_context_id I  

i_config_ptr 

 

I Pointer to a memory space containing configuration data 

for a device 

i_size_int I Number of bytes of configuration data stored at location 

of i_config_ptr 

o_instance_id O A handle to the allocated instance 

 

Description: If a bitstream has been loaded into memory through other means than oa_alloc_instance, 

this function can be used to associate a instance_id with that memory space. Note: The memory space 

containing the bitstream will not be reclaimed when performing oa_free_instance, oa_end, or any other 

function that would normally have de-allocated the memory space for the bitstream. Responsibility for 

reclaiming that memory space lies with the allocator of that space. 

 

Error conditions: 

 

 

 

 

 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

11 / 25 Copyright 2008 OpenFPGA Inc. 

Function: oa_configure_device 

Usage:  success = oa_configure_device ( i_context_id, i_device_id, 

i_instance_id ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to configure 

i_instance_id I The instance to configure the device with 

 

Description: Configure a device with the specified instance and, if necessary, reset the device and the loaded 

instance. After this call, the device will be configured with the instance and made ready for execution. If the 

system allows it, the call is non-blocking, so other operations may be performed while the device is being 

configured. Any subsequent API call that requires the device to have completed its configuration will block until 

configuration is completed. 

 

Error conditions: 

 

Function: oa_init_device 

Usage:  success = oa_init_device ( i_context_id, i_device_id ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to initialize 

 

Description: Initialize a device to its initial state. This puts a configured device in a state ready for execution and 

signals the loaded instance to reset. This call does not clear the instance from the device. 

 

Error conditions:



Preliminary Draft Specification for Comment  Updated July 16, 2008 

12 / 25 Copyright 2008 OpenFPGA Inc. 

5.3 Buffer Allocation 

 
These API calls will allocate, free and re-assign buffers for communication of data to and 

from the RC devices. 
 

Function: oa_malloc_buffer 

Usage:  success = oa_malloc_buffer ( i_context_id, i_device_id, 

i_port_pos_str, i_size_int, i_mode_int, o_buff_id ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The device to communicate with on this buffer 

i_port_pos_str I The memory port on the device that this buffer shall 

be associated with 

i_size_int I The minimum number of bytes to allocate in the 

buffer 

i_mode_int I The direction of communication for this buffer 

INPUT, OUTPUT or INOUT 

o_buff_id O A structure representing the allocated buffer 

 

Description: Allocate memory to use when communicating with a device. The buffer is associated with a 

particular device and a particular memory port on the device, along with the direction of communication that will 

take place on this buffer. The memory may be aligned to be optimal for data transfers, e.g. on memory page 

boundaries. The size argument is a minimal size only; for some kinds of allocation, memory can only be 

allocated in chunks. The buffer may be allocated in memory-mapped memory directly attached to the device on 

some platforms, such as the Cray XD1. On other platforms, such as SGI and Nallatech, the buffer will be used 

message-passing style. 

 

Error conditions: 

 

Function: oa_reuse_buffer 

Usage:  success = oa_reuse_buffer ( i_context_id, i_device_id, 

i_port_pos_str, i_size_int, i_mode_int, o_buff_id ); 

 

Parameter I/O Description 

i_context_id I  

i_device_id I The new device to communicate with on this buffer 

i_port_pos_str I The memory port on the new device that this buffer 

shall be associated with 

i_mode_int I The direction of communication for this buffer 

INPUT, OUTPUT or INOUT 

i_buff_id I The old buffer that is being re-used 

o_buff_id O A new structure representing the buffer in its new use 

 

Description: In some situations the same buffer needs to be used together with several different devices. One 

example is when the output of one device is to be used as input to another device. To avoid memory copying in 

such situations, a buffer can be re-used for communication with two different devices. 

 

Error conditions: 

 

 

 

 

 

 

 

 

 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

13 / 25 Copyright 2008 OpenFPGA Inc. 

Function: oa_get_buffer_ptr 

Usage:  success = oa_get_buffer_ptr ( i_context_id, i_buff_id, 

o_buffer_ptr ); 

 

Parameter I/O Description 

i_context_id I  

i_buff_id I A buffer id referring to the memory 

 

Description: Returns a pointer to the buffer referred to by the i_buff_id. Memories that are returned from 

oa_get_buffer_ptr will not be automatically freed by oa_close. This allows the program to use buffer 

spaces even after the use of the OpenFPGA GenAPI has ceased, without first performing a memory copy. After 

a call to oa_get_buffer_ptr it is the responsibility of the calling program to eventually free the buffer, 

either through oa_free_buffer, or, if the API has been closed, through commonly available means, such as 

free(). 

 

Error conditions: 

 

Function: oa_free_buffer 

Usage:  success = oa_free_buffer ( i_context_id, i_buff_id ); 

 

Parameter I/O Description 

i_context_id I  

i_buff_id I The buffer to free 

 

Description: Free the resources associated with this buffer. If the memory for the buffer has been re-used for use 

with several devices, all buff_id:s that refer to the same memory must be freed before the memory itself will 

be freed. If the buff_id is currently in use by a running FPGA, the function will fail. This will also free buffers 

have been accessed through oa_get_buffer_ptr. 

 
Error conditions:



Preliminary Draft Specification for Comment  Updated July 16, 2008 

14 / 25 Copyright 2008 OpenFPGA Inc. 

5.4 Execution  
 

These API calls provide the process abilities to execute and communicate with a instance 

running in a device 
 

Function: oa_run 

Usage:  success = oa_run ( i_context_id, i_device_id ); 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The device to run 

 

Description: Runs the instance configured on the device. The call to oa_run is non-blocking, i.e. the call 

returns immediately. oa_send should be performed to transfer data to device memories before oa_run is 

called. After a subsequent call to oa_wait, oa_receive should be used to retrieve data that has been 

computed on the device. oa_malloc_buffer must have been performed on both send and receive buffers 

before oa_run is called to allow for shared-memory models. 

 

Error conditions: 

 

Function: oa_wait 

Usage:  success = oa_wait ( i_context_id, i_device_id ); 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The running device to wait for completion on 

 

Description: A blocking wait for an RC device to complete its run. The function will return when the run of the 

instance on the RC device has completed. 

 

Error conditions: 

 

Function: oa_status 

Usage:  success = oa_status ( i_context_id, i_device_id, o_status); 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The device to test status on 
O_status O The status of the device 

 

Description: A method to test the status for a configured device. The function returns immediately with the 

latest status of the device. Status states include: 

OA_STATUS_UNDEFINED:= device resource prior to any initialization. 

OA_STATUS_CONFIGURED := returned for a device that has been configured but has not yet been 

started 

OA_STATUS_RUNNING := returned for a device that is currently running 

OA_STATUS_STOPPED := returned for a device that has been started but is no long running. 

 

Error conditions: 

OA_STATUS_UNDEFINED will result in the success state to be set to error.  

 

 

 

 

 

 

 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

15 / 25 Copyright 2008 OpenFPGA Inc. 

Function: oa_abort 

Usage:  success = oa_abort ( i_context_id, i_device_id ); 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The device to abort 

 
Description: Forcibly aborts execution on a currently running device before normal completion. After the call, 

buffers that are declared OUTPUT or INOUT will be in an unpredictable state. Flushing of buffer contents is not 

required in this version 

 

Error conditions: 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

16 / 25 Copyright 2008 OpenFPGA Inc. 

5.5 Data Transfer 

 

Function: oa_send 

Usage:  success = oa_send ( i_context_id, i_buff_id ); 

 

Parameter I/O Description 
i_context_id I  
i_buff_id I The id of the buffer where the data resides before 

sending. During the malloc call, the buff_id was 

associated with full information about what device to 

send data to, the mode of transfer, etc. 

 

Description: Send data to a device. On systems with message-passing, such as Nallatech or SGI, the function 

actually performs the data transmission: The function sends the data in the buffer to memories connected to the 

device, where they will be available to the instance once it is run. On systems with memory mapping, such as the 

Cray XD1, the function takes the role of synchronization: The function call indicates that the shared memory 

region is now available to the device and will no longer be modified by the host process. 

 

Error conditions: 

 

 

Function: oa_receive 

Usage:  success = oa_receive ( i_context_id, o_buff_id ); 

 

Parameter I/O Description 
i_context_id I  
i_buff_id I The id of the buffer to receive data in. During the 

malloc call, the buff_id was associated with full 

information about what device to get data from, the 

mode of transfer, etc. 

 

Description: Receives a data block from a device. On systems with message-passing, such as Nallatech or SGI, 

the function actually performs the data transmission: The function transfers data from the device to the buffer. 

On systems with memory mapping, such as the Cray XD1, the function takes the role of synchronization: The 

function call indicates that the shared memory region is now available to the host process and will no longer be 

modified by the device. The function will block, on message-passing systems until the data transfer from the 

device has completed, on shared-memory systems until the buffer has been released by the device. 

 

Error conditions: 

 

 

Function: oa_write_parameter{32|64} 

Usage: success = oa_write_parameter{32|64} ( i_context_id, 

i_device_id, i_parameter_pos_str, i_value_int{32|64} ) 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The device to write the parameter to 
i_parameter_pos_str I The parameter port on the device to write the 

parameter to 
i_value_int{32|64} I The parameter value as 32 bit-wide or 64 bit-wide 

reprentation 

 
Description: Writes a parameter to the device. Only one value can be sent per parameter port during the run. 

 

Error conditions: 

 

 

 

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

17 / 25 Copyright 2008 OpenFPGA Inc. 

Function: oa_read_parameter{32|64} 

Usage: success = oa_read_parameter{32|64} ( i_context_id, i_device_id, 

i_parameter_pos_str, o_value_int{32|64} ) 

 

Parameter I/O Description 
i_context_id I  
i_device_id I The device to read the parameter from 
i_parameter_pos_str I The parameter port on the device to read the 

parameter from 
o_value_int{32|64} O The resulting value in a 32 bit-wide or 64 bit-wide  

representation 

  

Description: Receives a single parameter from the device. Only one value can be received per parameter port 

during the run. 

 

Error conditions: 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

18 / 25 Copyright 2008 OpenFPGA Inc. 

5.9 Property Definitions 

 

This section defines the minimal properties required by the standard specification for each level of abstraction. 

 

Methods: oa_get_context_property(), oa_set_context_property() 

 

Name Values Description 

 

Version 0.4 Valid versions of the GenAPI 

currently implemented or to be 

utilized for subsequent execution 

   

 

 

 

Methods: oa_get_device_property(), oa_set_device_property() 

 

Name Values Description 

 

Example: Vendor Text less than 32 characters Manufacturer of the device 

Model Text less than 32 characters Model number of the device 

(vendor defined and registered 

name) 

N_Mem_Banks Integer Number of memory banks 

attached to the device 

N_Mem_Types Integer Number of different types of 

memory banks attached to the 

device (QDRAM, SRAM, DRAM, 

…) 

Mem_Bank_Sizes Where supported, structure of 

integers presented as a comma 

separated value list. E.g. 

“SRAM=10,DRAM=20” provides 

the information on two memory 

banks, SRAM of size 10MB and 

DRAM of size 20MB. 

Ordered list of the size of memory 

banks in Mbyte (1M=2^20)  

Optional: Link_Bandwith Integer Theoretical peak bandwidth 

between device and host system in 

Gbyte/s (1G = 2^30) 

Optional: Link_Latency Integer Theoretical lantency of the link 

between device and host system in 

ns. 

   

 

 

 

Methods: oa_get_instance_property(), oa_set_instance_property() 

 

Name Values Description 

 

Example: Max_Clock_Rate Text less than 32 characters The maximum frequency that the 

given instance may be executed 

MD5_Checksum Text less than 128 characters The MD5 checksum of the 

bitstream used to create the 

instance 

SHA1_Checksum Text less than 128 characters The SHA1 checksum of the 

bistream used to create the 

instance 

   

 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

19 / 25 Copyright 2008 OpenFPGA Inc. 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

20 / 25 Copyright 2008 OpenFPGA Inc. 

6.0 System Behavior 

 
 

Significant operational states of the system are described below. Expected behavior within these 

states is described for each.  

 

1.0 Pre-initialization: The state of the environment prior to execution of the oa_init function that 

creates an accelerator context. 

 

2.0 Initialized Environment: The state of the environment following initialization and creation of an 

accelerator context and prior to committing RC resources for use. In this state, RC devices (FPGAs) 

may be readily added and removed.  

 

3.0 Device Committed: The state of the system following allocation and commitment of RC devices 

(FPGAs) for the application.  

 

4.0 Instances Allocated: The state of the system following the commitment of RC devices and first 

addition of a instance for configuring resources. Instances may be added and freed in this state without 

limit. 

 

5.0 Device Configured: The state of the system immediately following the first commitment of a 

instance to a specific RC device. Additional RC devices may be configured and initialized in this state. 

Furthermore, instances may be added and eliminated in this state. Errors occur if unavailable instances 

are removed, or RC devices are attempted for configuration with non-existing instances.  

 

6.0 Device Running: At least one RC device is running on the system. Instances may be added or 

removed when in this state. RC devices may be configured and started in this state provided RC device 

is not running.  

 

Clarifications:  

• Buffer allocations must follow configuration of the RC devices and prior to commencement of 

RC device execution. 

• Send and receive functions are only successful if the requested RC resource is either prepared 

for  the run state (send) or is in the run state (receive). 

• Query and set functions do not transition the major system states. 

• Normal validation of parameters for each invoked method is assumed. 

• RC resources on the system are discovered as part of the initialization process 

 

 Primary Error Message Summary  

 
Error Message List Explanation 

OA_ENVIRONMENT_NOT_READY Environment not initialized 

OA_DEVICE_COMMITTED Attempting to commit a previously committed device 

OA_DEVICE_RUNNING Attempting to change allocation of a running device 

OA_NO_COMMITTED_DEVICES There were no devices committed prior to adding new 

instances 

OA_NO_AVAILABLE_INSTANCE The given instance is not allocated 

OA_DEVICE_NOT_CONFIGURED The given reconfigurable resource is not configured 

OA_DEVICE_NOT_RUNNING The given reconfigurable device is not running 

OA_INVALID_DEVICE The device handle passed is not valid 

OA_INVALID_INSTANCE The instance handle passed is not valid 

OA_INVALID_CONTEXT The context handle passed is not valid 

 

 

The following state-transition table defines the dominant system behavior for successful execution and 

changes in the predominant system states when using the General API.  



Preliminary Draft Specification for Comment  Updated July 16, 2008 

21 / 25 Copyright 2008 OpenFPGA Inc. 

 

Significant system changes are highlighted in green.  

Environment re-initialization transitions are highlighted in yellow.  

Peach color highlights calls that are not errors yet do not cause a major state transition. 
 

Methods in highlighted in bold are state changing methods used in a normal execution.  

Additional problem specific memory allocations are required for most implementations. 
 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

22 / 25 Copyright 2008 OpenFPGA Inc. 

 

State 

Method 

Pre-

initialization 

(PI) 

1.0 

Initialized 

Environment 

(IE) 

2.0 

Devices 

Committed 

(DC) 

3.0 

Instances 

Allocated 

(IA) 

4.0 

Devices 

Configured 

(DD) 

5.0 

Devices 

Running 

(DR) 

6.0 
oa_init [IE] 

Action: 

Create new 

context 

[IE] 

Action: 

Create new 

context 

[IE] 

Action: 

Create new 

context 

[IE] 

Action: 

Create new 

context 

[IE] 

Action: 

Create new 

context 

[IE] 

Action: 

Create new 

context 
oa_alloc_device_add Error 

(Environment 

not 

initialized) 

No Change/ 

A: individual 

device added 

Error (if 

device 

already 

committed) 

Error (devices 

already 

committed) 

Error (devices 

already 

committed) 

Error (devices 

already 

running) 

oa_alloc_device_free Error 

(Environment 

not initialized 

No Change/ 

A: individual 

device freed 

Error (if 

device 

already 

committed) 

Error (devices 

already 

committed) 

Error (devices 

already 

committed) 

Error (devices 

already 

running) 

oa_alloc_device_commit Error 

(Environment 

not 

initialized) 

[DC] 

A: devices 

committed 

No change/ 

No Error 

Error (devices 

already 

committed) 

Error (devices 

already 

committed) 

Error (devices 

already 

running) 

oa_alloc_instance Error 

(Environment 

not 

initialized) 

Error 

(resources 

must be 

committed 

before adding 

instances) 

[IA] 

A: instance is 

added to 

available 

instances 

No change/ 

A: Instance 

added 

No Change/ 

A: Instance 

added 

No Change/ 

A: Instance 

added  

oa_use_instance Error 

(Environment 

not 

initialized) 

Error 

(resources 

must be 

committed 

before adding 

instances) 

[IA] 

A: instance is 

added to 

available 

instances 

No change/ 

A: Instance 

added 

No Change/ 

A: Instance 

added 

No Change/ 

A: Instance 

added 

oa_free_instance Error 

(Environment 

not 

initialized) 

Error (no 

available 

instances) 

Error (no 

available 

instances) 

No change 

(Error if 

instance is not 

in allocated 

set) 

No change/ 

A: instance is 

freed (Error if 

instance is not 

in allocated 

set) 

No change/  

A: instance is 

freed (Error if 

instance is not 

in allocated 

set) 
oa_configure_device Error 

(Environment 

not 

initialized) 

Error (no 

available 

instances) 

Error (no 

available 

instances) 

[DC] 

A: configure 

device 

No change/ 

A: configure 

device with 

instance 

Error (if on 

currently 

running 

device) 

oa_init_device Error 

(Environment 

not 

initialized) 

No change  No Change No change/ 

A: device 

initialized 

No change/ 

A: device 

instance is 

initialized 

Error (if on 

currently 

running 

device) 
oa_run Error 

(Environment 

not 

initialized) 

Error (device 

not 

configured) 

Error (device 

not 

configured) 

Error (device 

not 

configured) 

[DR] No Change 

oa_wait Error 

(Environment 

not 

initialized) 

Error (device 

not 

configured) 

Error (device 

not 

configured) 

Error (device 

not yet 

configured) 

Error (if 

request for 

non-running 

device) 

[DD] 

A: wait for 

decice to 

complete 

oa_abort Error 

(Environment 

not 

initialized) 

Error (device 

not 

configured) 

Error (no 

running 

devices) 

Error (device 

not yet 

configured) 

Error (if 

request for 

non-running 

device) 

[DD] 

A: Abort 

requested 

device 

oa_end [PI]Action: 

Release 

context 

[PI] 

A: Release 

context 

[PI] 

A: Release 

context 

[PI] 

A: Release 

context 

[PI] 

A: Release 

context 

[PI] 

A: abort 

devices 

 



Preliminary Draft Specification for Comment  Updated July 16, 2008 

23 / 25 Copyright 2008 OpenFPGA Inc. 

State Diagram Transition Description 
 

Required standard behavior for the system using primitive functions defined in the API for a single created 

context.  

 

1: oa_init 

2: oa_init (another version arg),  oa_alloc_device_*,  oa_free_device, oa_list_device, oa_{get/set}_property 

3: oa_alloc_device_commit 

5: oa_{alloc/free/use}_instance,  

7: oa_configure_device, 

9: oa_run 

10: oa_end 

 

 

 

 

 

 

 

 

 

 

Pre Init

Init Env

Dev Comm

Inst Alloc

Dev Config

Dev Run

1

2

7

5

3
9

10

4

6

8

Pre InitPre Init

Init EnvInit Env

Dev CommDev Comm

Inst AllocInst Alloc

Dev ConfigDev Config

Dev RunDev Run

1

2

7

5

3
9

10

4

6

8



Preliminary Draft Specification for Comment  Updated July 16, 2008 

24 / 25 Copyright 2008 OpenFPGA Inc. 

8.0 Revision History 
 

July 1, 2008 – Added revised methods and definitions (S Mohl) 

July 7, 2008 – Added error condition placeholders, state descriptions and corresponding transition table. (E 

Stahlberg) 

July 9, 2008 – fpga_id replaced with device_id to support generic accelerators including groups of fpgas 

working as a unit (E Stahlberg) 

July 14, 2008 – Revisions to clarify state behavior and rename methods for context and instance relating to 

run-time contexts and design instances. (T Steinke/E Stahlberg) Create version 0.4. 

July 16, 2008 – Final cleanup and editing.



Preliminary Draft Specification for Comment  Updated July 16, 2008 

25 / 25 Copyright 2008 OpenFPGA Inc. 

9.0 Comments and Questions 

 
July 9, 2008 OpenFPGA Forum 

Q: How are environment variables handled in the get_property and set_property methods? 

A: standard updated to indicate that accelerator specific execution environment variables are handled in the 

get and set property methods in the first version of the standard. General environment variable inquiry and 

setting are not included in the first version of the standard. (Modeled after OpenMP specification behavior) 

 

Q: Consider revising term ‘design’ in favor of another term. 

A: Recommend replacing design with term instance 

 

Q: Why is there a new memory allocation method? 

A: A new memory allocation method is required to support vendor implementation-dependent handling of 

hierarchical memory, such as memory common between FPGA and calling process 

 

Q: Should instance pool be limited to a process or be shared among processes? 

A: An implementation dependent choice. Each application should be responsible to see that each rc bitstream 

is loaded for the given application.  

 

Q: What about a test FPGA runtime status capability? 

A: This functionality will be added as oa_get_device_status() 

 

Q: What about accelerator initiated data transfers? 

A: These are an implementation dependent choice for possible better performance. Receive buffers have been 

previously allocated and are available to the accelerator to write when data is available. Therefore, the use of this 

technique is not precluded in the definition, and not required. 

 

Q: Be consistent in naming methods. Either be open accelerator or open fpga but not both. 

A: Methods named consistently relative to resource involved in the result. Where possible, method names will 

be generic. 

 

Q. Which methods are high-level and which are low-level? 

Recommend which methods are to be used to create libraries. 

What methods should be used in a high-level application development? 

What methods should be used in a low-level application development? 

A: Following the lead for OpenMP, methods will be provided across levels. Several examples will be 

provided with best practices in each instance. The choice of how methods are used within the application 

remains the purview of the developer. 

 

Q: What about a single method to wait for all accelerators? 

A: A constant will be defined to use in place of device_id to indicate all devices within a working context. 

 

Q: Can oa_init being called multiple times? 

A: Yes. Successful return only if called with a supported version of the interface when environment is in the 

pre-initialized state. Calls with an unsupported version number will result in an error status. 

 

Q. What is the behavior if an allocated device becomes no longer available before the commit is called? 

A: The commit returns an error status if all allocated devices in the environment cannot be committed.  

 

Q: Is the state information thread local or process global in nature? 

A:  State information is globally accessible by context _id.   

 


